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ABSTRACT: We combine two graphical SAR analysis methods, Network-like Similarity
Graphs (NSGs) and Similarity-Potency Trees (SPTs), to search for SAR information in a
large and heterogeneous compound data set containing more than 13,000 antimalarial
screening hits that was recently released by GlaxoSmithKline (GSK). The NSG-SPT
approach first identifies subsets of compounds inducing local SAR discontinuity in data sets
and then extracts available SAR information from these subsets in a graphically intuitive
manner. Applying the NSG-SPT analysis scheme, we have identified in the GSK collection
compound subsets of high local SAR information content including both known and previously unknown antimalarial chemotypes,
which yielded interpretable SAR patterns. This information should be helpful to prioritize and select antimalarial candidate
compounds for further chemical exploration. Furthermore, the NSG-SPT tools are publicly available, and our study also shows how
to practically apply these SAR analysis methods to study large compound data sets.

KEYWORDS: Anti-malaria screening hits, data mining, structure-activity relationship (SAR) information, graphical SAR analysis,
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We have introduced different numerical and graphical anal-
ysis methods to systematically search for SAR information

in large compound data sets and extract available information.1-3

TheseSARdataminingmethods conceptually depart fromcommonly
used statistical, graphical, and molecular classification approa-
ches.4-10 Among other SAR features, our methods focus on the
identification of local SAR environments that are rich in inter-
pretable structure-activity information.1-3 In order to study
relationships between global and local SAR features, Network-
like Similarity Graphs (NSGs) have been introduced that repre-
sent an annotated similarity-based molecular network structure
integrating different levels of SAR-relevant chemical informa-
tion.11 Furthermore, the Similarity-Potency Tree (SPT) is
another recently introduced data structure designed to explore
local SAR environments that only utilizes compound potency
values and nearest neighbor similarity relationships.12 These two
data analysis methods are combined herein to identify and
characterize SAR environments in a large screening set.

Figure 1 summarizes key features of NSGs and SPTs. In
NSGs, compounds are represented as nodes and connected by
edges if their calculated pairwise 2D similarity exceeds a pre-
defined threshold value. It should be noted that the assessment of
compound similarity is generally influenced by chosen molecular
representations (descriptors) and similarity metrics (see Com-
putational Procedures). Nodes are color-coded using a contin-
uous color spectrum reflecting the potency range in a compound
set, i.e. from green (lowest) to red (highest potency). Further-
more, nodes are scaled in size according to the contribution of
individual compounds to local SAR discontinuity, as assessed by
a numerical SAR analysis function.11 This numerical function

systematically relates compound similarity values and potency
differences to each other and quantifies SAR contributions on a
per-compound basis. Higher values (and thus larger nodes)
indicate compounds whose potency significantly deviates from
that of their structural neighbors. Thus, pairs of large red and
green nodes connected by an edge represent structurally similar
compounds with large potency differences that form “activity
cliffs”,1,3 i.e. regions of highest local SAR discontinuity. In
addition to accounting for pairwise compound similarity relation-
ships, the data set is also clustered to provide an additional level
of similarity information. For visual analysis, a graphical layout
algorithm is applied that places multiple densely connected
compounds in close vicinity in the graphical representation and
separates weakly connected regions from each other.11 In gen-
eral, compound subsets that predominantly consist of small
similarly colored nodes form continuous local SARs, whereas
compounds in clusters with larger red and green nodes form
discontinuous local SARs.

SPTs represent a treelike data structure that accesses SAR
information in a manner that is complementary to NSGs. A
characteristic feature of SPTs is that each SPT is centered on an
individual root molecule. Here, compounds are also represented
as nodes and are color-coded in analogy to NSGs (Figure 1).
However, in SPTs, edges account for 2D structural nearest
neighbor relationships (i.e., a compound is only connected to
its nearest neighbors), and compounds are arranged in layers of
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subsequent nearest neighbor relationships. From the top to the
bottom in an SPT, the similarity to the root compound decreases.
Systematically generated SPTs represent in part overlapping
compound neighborhoods focused on one root compound at a
time (hence, for a data set with n compounds, n trees are
obtained). Informative SPTs contain characteristic horizontal
and vertical node patterns with systematic potency increases.
Horizontal node patterns are formed by different neighbors of
the same compound, and vertical patterns, by compounds with
subsequent nearest neighbor relationships. SPTs are ranked for
further analysis according to their SAR information content using
a scoring function that emphasizes well-defined SAR patterns
produced by similar compounds with different potency.

NSG-SPT analysis combines compound network and tree
analysis in a sequential manner. As illustrated in Figure 1, NSG-
SPT analysis searches for local regions (compound subsets) of
significant SAR discontinuity in NSGs and then analyzes the SAR
information that is associated with these regions in a compound-
centric manner using SPTs.

The release of the GlaxoSmithKline (GSK) antimalarial
screening data13 has been a pioneering effort, making a large
body of compound data generated in the pharmaceutical industry
available to the public. It provides a significant opportunity for
further discovery efforts focusing on neglected diseases in pub-
licly supported research environments and, in addition, for the
development and validation of screening data and SAR analysis
methods. The GSK data set contains a total of 13,533 com-
pounds, each of which displayed at least 80% confirmed inhibi-
tory activity in parasite growth assays at 2 μM concentration.
Analysis of these hits revealed that they represented 416 different
chemotypes,13 which were defined based on the presence of
unique heteroatom scaffolds (and we adhere to this definition
herein). Furthermore, target predictions were also carried out for
these compounds, suggesting that they might act against as many
as 146 different microbial targets.13 Hence, this hit set is not only
large in size but also highly heterogeneous in terms of compound
structure and function(s). Thus, extracting SAR information

from such data, if available, is a highly relevant but certainly far
from routine task. As such, this compound data set represents a
prime example for the application of SAR data mining and
analysis methods.

Figure 2a shows an NSG of the entire GSK data set. The NSG
is interactively navigated. Zooming enables the analysis of graph
details, and nodes are graphically associated with corresponding
compound structures. Pairwise compound similarity relation-
ships are indicated by gray edges. For clarity, only compounds
connected by edges are displayed. This was done not only
because of the large data set size but also because compounds
without structurally similar neighbors contribute only very little,
if any, SAR information. For the purpose of our analysis, one
aspect of the standard NSG format11 was modified, i.e. no
clustering was carried out to complement the information
provided by the pairwise similarity-based network. This was
done because we also compared the results of NSG analysis to
conventional cluster analysis of screening data, as further dis-
cussed below.

The NSG in Figure 2a illustrates the structural heterogeneity
of the GSK data set. There are densely connected central regions
in the NSG but also many peripheral nodes with only few or
single connections. In the NSG, two regions of prominent local
SAR discontinuity become immediately apparent that are high-
lighted in Figure 2a. These regions are characterized by the
presence of many larger red and green/yellow nodes and are
shown in detail in Figure 2b. Compounds within these encircled
regions in Figure 2a were then selected from the NSG and
subjected to SPT analysis. Table S1 of the Supporting Informa-
tion reports the compound composition of the selected regions
and subsequently selected regions, as discussed below. For each
region, SPTs were systematically generated, with each compound
used once as a tree root, and informative SPTs were analyzed in
detail. Representative examples are shown in Figure 2c. The first
SPT organizes compounds from NSG region 1 in Figure 2b and
contains several compound series that share the same ancestor
and cover a broad potency range. Additionally, highly and weakly

Figure 1. NSG-SPT analysis scheme. On the left, an exemplary NSG is shown calculated for a set of known thrombin inhibitors. This NSG consists of
several components that display different local SARs. Nodes represent individual compounds that are connected by edges if they share 2D similarity
above a predefined threshold. The color and size of a node reflects the potency and contribution to the local SAR discontinuity of the corresponding
compound, respectively, as indicated below the graph. The highlighted region (compound subset) forms the most discontinuous local SAR and was
subjected to SPT analysis. For this purpose, each compound is selected once as the root to build a set of overlapping trees. In each SPT, the remaining
compounds are connected to the root on the basis of nearest neighbor similarity relationships. Two exemplary SPTs are shown on the right. These SPTs
reveal horizontal and vertical SAR patterns that are highlighted. SPTs are ranked based on the occurrence of such patterns.
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potent compounds form subgroups within the tree and generate
an ordered potency distribution. Horizontal patterns of struc-

turally similar compounds (analog series) with gradually increas-
ing potency are evident and highlighted in Figure 2c. Hence, this

Figure 2. NSG-SPT analysis of theGSK data set. (a) NSGof the complete hit set. Two prominent regions of local SAR discontinuity are highlighted and
shown in detail in part b. For these regions, corresponding highly ranked SPTs are provided in part c. Selected compounds are shown, and patterns that
reflect significant SAR information are highlighted.
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SPT and also other overlapping SPTs reveal clear SAR information.
Similar patterns can be observed in the second SPT in Figure 2c,
which contains compounds from NSG region 2 in Figure 2b. The
compounds in both SPTs are derivatives of or structurally related to
diaminopyrimidines and diaminotriazines that dominate the cor-
responding NSG regions and are already known classes of anti-
malarial compounds.Hence, at least someof the clear SAR patterns
we observed in our SPTs were likely the result of optimization
efforts focusing on this compound class. This SAR information was
most prominently displayed by the GSK data set.

In order to focus our subsequent analysis on previously
unknown inhibitory chemotypes, we collected known antimalar-
ial compounds from major public domain repositories of bioac-
tive compounds, BindingDB14 and ChEMBL,15 and examined
whether these known compounds or similar molecules were
present in the GSK collection. In total, we identified 2914 known
antimalarial compounds in the data set that corresponded to
1186 different chemotypes and removed these compounds from
the GSK set. We then recalculated the NSG for the remaining
data set, as shown in Figure 3. For comparison with Figure 2a, we
retained the NSG layout computed for the original data set such
that removal of known active compounds created “holes” in the
NSG in Figure 3. However, due to the removal of highly potent
known compounds, the potency distribution in the data set was
modified, and we thus adjusted the color code to span a potency
range from 1 μM to 10 nM. This adjustment further emphasized
other local NSG regions of notable SAR discontinuity. Three
selected regions (1-3) are highlighted in Figure 3 and are shown
in detail in Figure S1 of the Supporting Information. Here, local
SAR discontinuity was more characteristic of screening hits,

because known highly potent compounds were absent that
dominated the NSG regions displayed in Figure 2b. However,
the first compound subset in Figure S1 of the Supporting
Information also displays a high degree of SAR discontinuity,
and the corresponding SPT in Figure S2 of the Supporting
Information shows a fairly ordered potency distribution with
horizontal and vertical patterns that largely separate weakly
potent and moderately to highly potent compounds from each
other and reveal SAR trends. For example, the right branch of the
SPT contains series of similar compounds with varying potency
that can be readily selected for further analysis. Region 2 in Figure
S1 of the Supporting Information contains comparably few
compounds, among them a series of close analogues. In the
corresponding SPT in Figure S2 of the Supporting Information,
several analogues with medium potency are found to have child
nodes with further increasing potency. Different from region 2,
region 3 in Figure S1 of the Supporting Information is densely
populated, including very many weakly potent compounds that
do not contribute to local SAR discontinuity (small green
nodes). However, there are also numerous larger yellow to
orange and red nodes that induce a notable degree of local
discontinuity (that is, at first glance, masked by the large number
of structurally similar background compounds). The corre-
sponding SPT in Figure S2 of the Supporting Information is
also rather dense, and for clarity, only the right branch of the SPT
is shown (the complete SPT is provided in Figure S3 of the
Supporting Information). The right branch of the SPT reveals a
series of compounds that display vertical patterns of potency
variations, and these compounds would also be attractive candi-
dates for further analysis.

Figure 3. NSG-SPT analysis after removal of known antimalarial chemotypes. NSG of the GSK data set after removal of known anti-malarial
chemotypes. The positions of the remaining nodes correspond to the layout in Figure 2a. To account for the removal of highly potent compounds, the
potency-based coloring was adjusted to range from 1 μM (green) to 10 nM (red).
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Interactive analysis of the NSG in Figure 3 reveals a variety of
other small regions with compounds containing apparent SAR
information that can be analyzed analogously to the representa-
tive examples discussed above.

Although compound clustering provides a standard informa-
tion layer of NSGs, it was deliberately omitted here from NSG
generation, as mentioned above. Thus, compound selection only
on the basis of a pairwise similarity network annotated with per-
compound SAR discontinuity contributions could be directly
compared to cluster analysis of the data set. Therefore, the
reduced GSK data set (without previously known antimalarial
chemotypes) was subjected to k-means clustering and divided
into 60 nonoverlapping clusters. The cluster and potency
distribution is reported in Figure S4 of the Supporting Informa-
tion. The composition of all clusters is freely available via the
following URL: http://www.lifescienceinformatics.uni-bonn.de
(please, see the Downloads section). Clusters with highest
median compound potency and clusters containing the most
potent remaining compounds were selected and mapped onto
the NSG representation, as shown in Figure S5 of the Supporting
Information. As can be seen, the selected clusters overlap with
regions that were prioritized on the basis of NSG analysis. Hence,
the NSG network layout already accounted for compound
clustering effects, without the addition of an explicit clustering
step. In this case, clusters selected on the basis of highest median
potency also contained compound subsets that displayed SAR
trends. However, potency-oriented cluster selection cannot re-
place a systematic account of pairwise similarity and potency
relationships for large-scale SAR analysis. For example, in
heterogeneous data sets containing chemically different series
of highly potent compounds, potency-oriented compound selec-
tion is likely to overlook the presence of SAR patterns at the
midpotency range that are often of particular interest for further
chemical exploration.

In summary, we have screened the large and heterogeneous
GSK antimalarial data set for SAR information using graphical
analysis tools. We have shown that a screening set containing
more than 13,000 hits with likely activity against more than 100
targets can be analyzed in a graphically intuitive manner. A key
aspect of NSG-SPT analysis, as presented herein, is that one first
focuses on the identification of compound subsets that are
discontinuous in their SAR behavior and then extracts available
SAR information in detail. Although SAR information in the
GSK data set is overall sparsely distributed, as one might expect
given its high-throughput screening origin and heterogeneity,
different local environments with notable SAR information
content have been identified. The most significant SAR informa-
tion contained in this data set was associated with previously
known antimalarial chemotypes. However, in addition, other
compound subsets were also found in the GSK collection that
displayed interpretable SAR patterns and should merit further
evaluation. Thus, the analysis should help to prioritize compound
subsets from this large pool of antimalarial screening hits for
follow-up studies.

’EXPERIMENTAL PROCEDURES

SPTs and NSGs have been generated and represented as described
previously.11,12 As a fingerprint for compound comparison, ECFP416

was used. As a criterion for edges between nodes in NSGs, connected
compounds needed to exceed a Tanimoto similarity threshold value of
0.4. In SPTs, compounds were only considered nearest neighbors above
a similarity threshold value of 0.55. For the third SPT in Figure S2 of the

Supporting Information which represents a very dense cluster of similar
compounds, the nearest neighbor threshold for SPT generation was
raised to 0.7. A previously reported scoring function12 was used to rank
SPTs computed for a compound cluster. This scoring function prioritizes
SPTs that contain multiple horizontal and vertical patterns formed by
analog series or pairwise similar compounds with gradually increasing
potency. Standard k-means clustering17 of the data setwas carried out using
WEKA.18 The number of clusters was set to 60, which resulted in clusters
with balanced inner-cluster distance distributions. NSG tools are publicly
available as a part of the SARANEA software19 and the SPT program is
also available without restrictions via the following URL: http://www.
lifescienceinformatics.uni-bonn.de/ (see the Downloads section).

’ASSOCIATED CONTENT

bS Supporting Information. Figure S1 shows details of re-
gions selected in Figure 3, and Figure S2 the corresponding SPTs.
Figure S3 shows the complete structure of the third SPT in Figure
S2. Figure S4 reports the k-means cluster and potency distribution
for the GSK data set. Figure S5 shows selected clusters mapped on
the NSG from Figure 3. Table S1 reports the composition of all
clusters of compounds discussed in the text. This material is
available free of charge via the internet at http://pubs.acs.org.
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